Nonexistence of anti-symmetric solutions for fractional Hardy–Hénon system

نویسندگان

چکیده

We study anti-symmetric solutions about the hyperplane $\{x_n=0\}$ for following fractional Hardy–Hénon system: \[ \left\{\begin{array}{@{}ll} (-\Delta)^{s_1}u(x)=|x|^\alpha v^p(x), & x\in\mathbb{R}_+^n, \\ (-\Delta)^{s_2}v(x)=|x|^\beta u^q(x), u(x)\geq 0, v(x)\geq 0,\ \end{array}\right. \] where $0< s_1,s_2<1$ , $n>2\max \{s_1,s_2\}$ . Nonexistence of are obtained in some appropriate domains $(p,q)$ under corresponding assumptions $\alpha,\beta$ via methods moving spheres and planes. Particularly, case $s_1=s_2$ one our results shows that domain nonexistence with decay conditions at infinity hold true, locates above Sobolev's hyperbola condition $\alpha, \beta$

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and Nonexistence of Positive Solutions for a System of Nonlinear Singular Fractional Differential Equations

In this paper, we establish sufficient conditions for the existence and nonexistence of positive solutions to the following nonlinear fractional differential system ⎪⎪⎨ ⎪⎪⎩ Dαu(t)+a(t) f (t,u,v) = 0 in (0,1) , Dβ v(t)+b(t)g(t,u,v) = 0 in (0,1) , u(0) = 0, u(1) = 0, u′(0) = 0, v(0) = 0, v(1) = 0, v′(0) = 0, (P) where 2 < α ,β 3 , a,b ∈ C ((0,1) , [0,+∞)) and the functions f ,g belong to C ([0,1]...

متن کامل

Existence and nonexistence of positive solutions for the fractional coupled system involving generalized p-Laplacian

In this article, we study a class of fractional coupled systems with Riemann-Stieltjes integral boundary conditions and generalized p-Laplacian which involves two different parameters. Based on the Guo-Krasnosel’skii fixed point theorem, some new results on the existence and nonexistence of positive solutions for the fractional system are received, the impact of the two different parameters on ...

متن کامل

Nonexistence of Solutions In

Consider the KPP-type equation of the form ∆u+f (u) = 0, where f : [0, 1] → R + is a concave function. We prove for arbitrary dimensions that there is no solution bounded in (0, 1). The significance of this result from the point of view of probability theory is also discussed.

متن کامل

Existence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations

In this paper, we consider a coupled system of nonlinear fractional differential equations (FDEs), such that both equations have a particular perturbed terms. Using emph{Leray-Schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.

متن کامل

Nonexistence of global solutions for a fractional problems with a nonlinearity of the Fisher type

This paper deals with the Cauchy problem for a nonlinear hyperbolic equation D1+α 0|t u+D 0|tu+ (− ) γ 2 u = h(t, x) | u |p| 1 − u |q, posed in Q = R+ × R, where pi, qi > 1, −1 < α < 1, 0 < β < 2, 0 < γ ≤ 2, and β < 1+α with given initial position and velocity u(x, 0) = u0(x), ut (x, 0) = u1(x), and the Cauchy problem for a nonlinear hyperbolic system with initial data   D 1+α1 0|t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings

سال: 2023

ISSN: ['0890-1740']

DOI: https://doi.org/10.1017/prm.2023.40